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Abstract

Recent research has reported that standard fine-tuning approaches can be unstable due to being prone to
various sources of randomness, including but not limited to weight initialization, training data order, and
hardware. Such brittleness can lead to different evaluation results, prediction confidences, and generaliza-
tion inconsistency of the same models independently fine-tuned under the same experimental setup. Our
paper explores this problem in natural language inference, a common task in benchmarking practices,
and extends the ongoing research to the multilingual setting. We propose six novel textual entailment
and broad-coverage diagnostic datasets for French, German, and Swedish. Our key findings are that the
mBERT model demonstrates fine-tuning instability for categories that involve lexical semantics, logic, and
predicate-argument structure and struggles to learn monotonicity, negation, numeracy, and symmetry.
We also observe that using extra training data only in English can enhance the generalization performance
and fine-tuning stability, which we attribute to the cross-lingual transfer capabilities. However, the ratio of
particular features in the additional training data might rather hurt the performance for model instances.
We are publicly releasing the datasets, hoping to foster the diagnostic investigation of language models
(LMs) in a cross-lingual scenario, particularly in terms of benchmarking, which might promote a more
holistic understanding of multilingualism in LMs and cross-lingual knowledge transfer.

Keywords: Evaluation; Model Interpretation; Multilinguality; Natural Language Inference; Cross-lingual learning; Transfer
learning

1. Introduction

The latest advances in neural architectures of language models (LMs) (Vaswani et al., 2017) have
raised the importance of NLU benchmarks as a standardized practice of tracking progress in the
field and exceeded conservative human baselines on some datasets (Raffel et al., 2020; He et al,,
2021). Such LMs are centered around the “pre-train & fine-tune” paradigm, where a pretrained
LM is directly fine-tuned for solving a downstream task. Despite the impressive empirical results,
pretrained LMs struggle to learn linguistic phenomena from raw text corpora (Rogers 2021),
even when increasing the size of pretraining data (Zhang et al., 2021). Furthermore, the fine-
tuning procedure can be unstable (Devlin et al., 2019) and raise doubts about whether it promotes
task-specific linguistic reasoning (Kovaleva et al., 2019). The brittleness of standard fine-tuning
approaches to various sources of randomness (e.g., weight initialization and training data order)
can lead to different evaluation results and prediction confidences of models, independently fine-
tuned under the same experimental setup. Recent research has defined this problem as (in)stability
(Dodge et al., 2020); (Mosbach et al., 2020a), which now serves as a subject of an interpretation
© The Author(s), 2022. Published by Cambridge University Press.
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direction, aimed at exploring the consistency of linguistic generalization of LMs (McCoy et al.,
2018, 2020).

Our paper is devoted to this problem in the task of natural language inference (NLI) which
has been widely used to assess language understanding capabilities of LMs in monolingual and
multilingual benchmarks (Wang et al., 2018, 2019; Liang et al., 2020; Hu et al., 2020b). The task is
framed as a binary classification problem, where the model should predict if the meaning of the
hypothesis is entailed with the premise. Many works show that NLI models learn shallow heuris-
tics and spurious correlations in the training data (Naik et al., 2018; Glockner et al., 2018; Sanchez
et al,, 2018), stimulating a targeted evaluation of LMs on out-of-distribution sets covering infer-
ence phenomena of interest (Yanaka et al., 2019b; Yanaka et al., 2019a; McCoy et al., 2019; Tanchip
etal., 2020). Although such datasets are extremely useful for analyzing how well LMs capture infer-
ence and abstract properties of language, English remains the focal point of the research, leaving
other languages underexplored.

To this end, our work extends the ongoing research on the fine-tuning stability and consistency
of linguistic generalization to the multilingual setting, covering five Indo-European languages
from four language groups: English (West Germanic), Russian (Balto-Slavic), French (Romance),
German (West Germanic), and Swedish (North Germanic). The contributions are summarized as
twofold. First, we propose GLUE-style textual entailment and diagnostic datasets® for French,
Swedish, and German. Second, we explore the stability of linguistic generalization of mBERT
across five languages mentioned above, analyzing the impact of the random seed choice, training
dataset size, and presence of linguistic categories in the training data. Our work differs from simi-
lar approaches described in Section 2 in that we (i) evaluate the inference abilities through the lens
of broad-coverage diagnostics, which is often neglected for upcoming LMs, typically compared
among one another only by the averaged scores on canonical benchmarks (Dehghani et al., 2021);
and (ii) analyze the per-category stability of the model fine-tuning for the considered languages,
testing mBERT’s cross-lingual transfer abilities.

2. Related work

NLI and diagnostic datasets. There is a wide variety of datasets constructed to facilitate the devel-
opment of novel approaches to the problem of NLI (Storks et al., 2019). The task has evolved
within a series of RTE challenges (Dagan et al., 2005) and now comprises several standardized
benchmark datasets such as SICK (Marelli et al., 2014), SNLI (Bowman et al., 2015), MNLI
(Williams et al., 2018), and XNLI (Conneau et al., 2018b). Despite the rapid progress, recent
work has found that these benchmarks may contain biases and annotation artifacts which raise
questions whether state-of-the-art models indeed have or acquire the inference abilities (Tsuchiya
2018; Belinkov et al., 2019). Various linguistic datasets have been proposed to challenge the models
and help to improve their performance on inference features (Glockner et al., 2018; Yanaka et al.,
2019a, 2019b, 2020; McCoy et al., 2019; Richardson et al., 2020; Hossain et al., 2020; Tanchip et al.,
2020). The MED (Yanaka et al., 2019a) and HELP (Yanaka et al., 2019b) datasets focus on aspects
of monotonicity reasoning, motivating the follow-up work on systematicity of this phenomenon
(Yanaka et al., 2020). HANS (McCoy et al., 2019) aims at evaluating the generalization abilities of
NLI models beyond memorizing lexical and syntactic heuristics in the training data. Similar in
spirit, the concept of semantic fragments has been applied to synthesize datasets that target quan-
tifiers, conditionals, monotonicity reasoning, and other features (Richardson et al., 2020). The SIS
dataset (Tanchip et al., 2020) covers symmetry of verb predicates, and it is designed to improve
systematicity in neural models. Another feature studied in the field is negation which has proved
to be challenging not only for the NLI task (Hossain et al., 2020; Hosseini et al., 2021) but also for
probing factual knowledge in masked LMs (Kassner and Schiitze 2020).
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Last but not least, broad-coverage diagnostics is introduced in the GLUE benchmark (Wang
et al., 2018) and has now become a standard dataset for examining linguistic knowledge of LMs
on GLUE-style leaderboards. To the best of our knowledge, there are only two counterparts of the
diagnostic dataset for Chinese and Russian, introduced in the CLUE (Xu et al., 2020) and Russian
SuperGLUE benchmarks (Shavrina et al., 2020). Creating such datasets is not addressed in recently
proposed GLUE-like benchmarks for Polish (Rybak et al., 2020) and French (Le et al., 2020).

Stability of neural models. A growing body of recent studies has explored the role of optimiza-
tion, data, and implementation choices on the stability of training and fine-tuning neural models
(Henderson et al., 2018; Madhyastha and Jain 2019; Dodge et al., 2020; Mosbach et al., 2020a).
Bhojanapalli et al., (2021) and Zhuang et al., (2021) investigate the impact of weight initialization,
mini-batch ordering, data augmentation, and hardware on the prediction disagreement between
image classification models. In NLP, BERT has demonstrated instability when being fine-tuned on
small datasets across multiple restarts (Devlin et al., 2019). This has motivated further research on
the most contributing factors to such behavior, mostly the dataset size and the choice of random
seed as a hyperparameter (Bengio 2012), which influences training data order and weight initial-
ization. The studies report that changing only random seed during the fine-tuning stage can cause
a significant standard deviation of the validation performance, including tasks from the GLUE
benchmark (Lee et al., 2019; Dodge et al., 2020; Mosbach et al., 2020a; Hua et al., 2021). Another
direction involves studying the effect of random seeds on model performance and robustness in
terms of attention interpretation and gradient-based feature importance methods (Madhyastha
and Jain 2019).

Linguistic competence of BERT. A plethora of works is devoted to the linguistic analysis of
BERT, and the inspection of how fine-tuning affects the model knowledge (Rogers et al., 2020).
The research has covered various linguistic phenomena, including syntactic properties (Warstadt
and Bowman 2019), structural information (Jawahar et al., 2019), semantic knowledge (Goldberg
2019), common sense (Cui et al., 2020), and many others (Ettinger 2020). Contrary to the common
understanding that BERT can capture the language properties, some studies reveal that the model
tends to lose the information after fine-tuning (Miaschi et al., 2020); (Singh et al., 2020); (Mosbach
et al., 2020b) and fails to acquire task-specific linguistic reasoning (Kovaleva et al., 2019); (Zhao
and Bethard 2020); (Merchant et al., 2020). Several works explore the consistency of linguistic
generalization of neural models by independently training them from 50 to 5,000 times and eval-
uating their generalization performance (Weber et al., 2018; Liska et al., 2018; McCoy et al., 2018;
McCoy et al., 2020). In the spirit of these studies, we analyze the stability of the mBERT model
w.r.t. diagnostic inference features, extending the experimental setup to the multilingual setting.

3. Multilingual datasets

This section describes textual entailment and diagnostic datasets for five Indo-European lan-
guages: English (West Germanic), Russian (Balto-Slavic), French (Romance), German (West
Germanic), and Swedish (North Germanic). We use existing datasets for English (Wang et al.,
2019) and Russian (Shavrina et al., 2020) and propose their counterparts for the other languages
based on the GLUE-style methodology (Wang et al., 2018).

3.1 Recognizing textual entailment

The task of recognizing textual entailment is framed as a binary classification problem, where the
model should predict if the meaning of the hypothesis is entailed with the premise. We provide
an example from the English RTE dataset below and describe brief statistics for each language in
Table 1.
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Table 1. Statistics of the NLI datasets. Vocab size refers to the total number of unique words. Num. of words
stands for the average number of words in a sample. Fr = French; De = German; Sw = Swedish.

Task Train Validation Test Vocab size Num. of words
RTE 2490 277 3000 22,200 26.9
TERRa 2616 307 3198 23,300 19.5
TERRa (Fr) 2616 307 3198 13,300 27.5
TERRa (De) 2616 306 3197 17,100 24.1
TERRa (Sw) 2613 307 3194 14,500 21.3

 Premise: ‘Dana Reeve, the widow of the actor Christopher Reeve, has died of lung cancer at
age 44, according to the Christopher Reeve Foundation.’

 Hypothesis: ‘Christopher Reeve had an accident.’
+ Entailment: False.

English: RTE (Wang et al., 2018) is a collection of datasets from a series of competitions on
recognizing textual entailment, constructed from news and Wikipedia (Dagan et al., 2005; Haim
et al,, 2006; Giampiccolo et al., 2007; Bentivogli et al., 2009).

Russian: Textual Entailment Recognition for Russian (TERRa) (Shavrina et al., 2020) is an ana-
log of the RTE dataset that consists of sentence pairs sampled from news and fiction segments of
the Taiga corpus (Shavrina and Shapovalova 2017).

French, German, Swedish: Each sample from TERRa is manually translated and verified by
professional translators with the linguistic peculiarities preserved, culture-specific elements local-
ized, and ambiguous samples filtered out. The resulting datasets contain fewer unique words than
the ones constructed by filtering text sources (RTE and TERRa). We relate this to the fact that
translated texts may exhibit less lexical diversity and vocabulary richness (Al-Shabab 1996; Nisioi
etal., 2016).

3.2 Broad-coverage diagnostics

Broad-coverage diagnostics (Wang et al., 2018) is an expert-constructed evaluation dataset that
consists of 1104 NLI sentence pairs annotated with linguistic phenomena under four high-level
categories (see Table 2). The dataset is originally included in the GLUE benchmark. It is used as
an additional test set for examining the linguistic competence of LMs, which allows for revealing
possible biases and conducting a systematic analysis of the model behavior.

As part of this study, LiDiRus (Linguistic Diagnostics for Russian), an equivalent diagnos-
tic dataset for the Russian language, is created (Shavrina et al., 2020). The creation procedure
includes a manual translation of the English diagnostic samples by expert linguists so that each
indicated linguistic phenomenon and target label is preserved and culture-specific elements are
localized. We apply the same procedure to construct diagnostic datasets for French, German,
and Swedish by translating and localizing the English diagnostic samples. The label distribu-
tion in each dataset is 42/58% (Entailment: True/False). Consider an example of the NLI pair
(Sentence 1: John married Gary’; Sentence 2: ‘Gary married John’; Entailment: True) and its
translation in each language:

o English: John married Gary’ entails ‘Gary married John’;

« Russian: < Bo6 scenuncs na Aauce’ entails © Auca eviuna samydic 3a booa’,
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Table 2. The linguistic annotation of the diagnostic dataset.

High-level categories Low-level categories

Lexical semantics Lexical entailment, morphological negation, factivity,
symmetry/collectivity, redundancy, named entities, quantifiers

Predicate-argument structure Core arguments, prepositional phrases, ellipsis/implicits,
anaphora/coreference, active/passive, nominalization,
genitives/partitives, datives, relative clauses, coordination scope,
intersectivity, restrictivity

Logic Negation, double negation, intervals/numbers, conjunction,
disjunction, conditionals, universal, existential, temporal, upward
monotone, downward monotone, non-monotone

Knowledge Common sense, world knowledge

o French: John a épousé entails ‘Gary a épousé John’;
o German: John heiratete Gary’ entails ‘Gary heiratete John’;
 Swedish: John gifte sig med Gary’ entails ‘Gary gifte sig med John’.

Linguistic challenges. Special attention is paid to the problems of the feature-wise translation
of the examples. Since the considered languages are Indo-European, there appear fewer trans-
lation challenges. For instance, all languages have morphological negation mechanisms, lexical
semantics features, common sense, and world knowledge instances. The main distinctions are
related to the category of the Predicate-Argument Structure. The strategy of case coding is exhib-
ited differently across the languages, for example, in dative constructions. Dative was widely used
in all ancient Indo-European languages and is still present in modern Russian, retaining numer-
ous functions. In contrast, dative constructions are primarily underrepresented in English and
Swedish, and all the dative examples in the translations involve impersonal constructions with an
indirect object instead of a subject. The same goes for genitives and partitives, where standard
noun phrase syntax indicates genitive relations as Swedish and English do not have case mark-
ing. For French, the “de + noun” constructions are used to indicate partitiveness or genitiveness.
Below is an example of an English sentence and its corresponding translations to Swedish and
French:

« English: ‘A formation of approximately 50 officers of the police of the City of Baltimore
eventually placed themselves between the rioters and the militiamen, allowing the 6th
Massachusetts to proceed to Camden Station.’;

« Swedish: ‘Om 50 poliser i staden Baltimore, i slutindan stod mellan demonstranterna och
brottsbekdmpande myndigheter, vilket gjorde det mojligt for 6: e Massachusetts Volunteer
Regiment gdr till Cadman station.’;

o French: ‘Une cinquantaine de policiers de Baltimore se sont finalement interposés entre
les manifestants et les forces de lordre, permettant au 6e régiment de volontaires du
Massachusetts de se rendre a Cadman Station.’.

Translations for the Logic and Knowledge categories are obtained with no difficulty, for exam-
ple, all existential constructions share patterns with the translated analogs of the quantifiers such
as “some,” “many,” etc. However, we acknowledge that some low-level categories cannot be for-
wardly translated. For example, elliptic structures, are in general, quite different in Russian than
in the other languages. Despite this, the translation-based method avoids the need for additional
language-specific expert annotation.
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4. Experimental setup

The experiments are conducted on the mBERT® model, pretrained on concatenated monolingual
Wikipedia corpora in 104 languages. We use the SuperGLUE framework under the jiant environ-
ment (Pruksachatkun et al., 2020b) to fine-tune the model multiple times for each language with
a fixed set of hyperparameters while changing only the random seeds.

Fine-tuning. We follow the SuperGLUE fine-tuning and evaluation strategy with a set of
default hyperparameters as follows. We fine-tune the mBERT model using a random seed € [0;5],
batch size of 4, learning rate of le™>, global gradient clipping, dropout probability of p = 0.1,
and the AdamW optimizer (Loshchilov and Hutter 2017). The fine-tuning is performed on
4 Christofari® Tesla V100 GPUs (32GB) for the maximum number of 10 epochs with early stop-
ping on the NLI validation data. The model is evaluated on the corresponding broad-coverage
diagnostics dataset as described below.

Evaluation. Since the feature distribution and class ratio in the diagnostic set are not balanced,
the model performance is evaluated with Matthew’s correlation coefficient (MCC), the two-class
variant of the R3 metric (Gorodkin 2004):

B TP x TN — FP x FN
~ /(TP +FP)(TP + FN)(IN + FP)(TN + FN)
MCC is computed between the array of model predictions and the array of gold labels

(Entailment: True/False) for each low-level linguistic feature according to the annotation (Wang
etal, 2019). The range of values is [ — 1;1] (higher is better).

MCC

Fine-tuning stability. Fine-tuning stability has multiple definitions in recent research. The
majority of studies estimate the stability as the standard deviation of the validation performance,
measured by accuracy, MCC, or F1-score (Phang et al., 2018; Lee et al., 2019; Dodge et al., 2020).
Another possible notion is per-point stability, where a set of models is analyzed w.r.t. their pre-
dictions on the same evaluation sample (Mosbach et al., 2020a; McCoy et al., 2019). More recent
works evaluate the stability by more granular measures, such as predictive divergence, L2 norm of
the trained weights, and standard deviation of subgroup validation performance (Zhuang et al.,
2021). This work analyzes the stability in terms of pairwise Pearson’s correlation as follows. Given
a fixed experimental setup, we compute the correlation coefficients between the MCC scores on
the diagnostic datasets, achieved by the models trained with different random seeds, and average
the coefficients by the total number of models (higher is better). Besides, we assess the per-category
stability, that is, the standard deviation in the model performance w.r.t. random seeds for samples
within a particular diagnostic category.

5. Testing the linguistic knowledge and fine-tuning stability

5.1 Language-wise diagnostics

We start with investigating how well the linguistic properties are learned given the standardized
NLI dataset by fine-tuning the mBERT model on the corresponding train data for each language
independently with the same hyperparameters and computing overall MCC by averaging MCC
scores for each diagnostic feature. Figure 1 shows a language-wise heat map with the results we
use as a “baseline” performance to analyze different experiment settings. Despite the fact that the
overall MCC scores are insignificantly different from one another (e.g., German: 0.15, English:
0.2), there is variability in how the model outputs correlate with the linguistic features w.r.t. the
languages. In order to measure this variability, we compute pairwise Pearson’s correlation between
the overall MCC scores and average the coefficients over the total number of language pairs. The

Yhttps://huggingface.co/bert-base-multilingual-cased
Chttps://sbercloud.ru/en
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Figure 1. Heat map of the mBERT’s language-wise evaluation on the diagnostic datasets. The brighter the color, the higher
the MCC score.

resulting Pearson’s correlation is 0.3, which denotes that the knowledge obtained during fine-
tuning predominantly varies across the languages, and there is no general pattern in the model
behavior. For instance, Conditionals contribute to the correct predictions for English (MCC =
0.6), slightly lower for French (MCC = 0.27), are neutral for German (MCC = 0.09) and do not
help to solve the task for Russian (MCC = —0.31) and Swedish (MCC = —0.25). On the other
hand, some features receive similar MCC scores for specific languages, such as Active/Passive
(English: MCC = 0.38; French: MCC = 0.38; Russian: MCC = 0.26; Swedish: MCC = 0.24),
Anaphora/Coreference (French: MCC = 0.21; German: MCC = 0.21; Russian: MCC = 0.26),
Common sense (French: MCC = 0; German: MCC = 0; Swedish: MCC = 0), Datives (German:
MCC = 0.34; Russian: MCC = 0.38; Swedish: MCC = 0.34), Genitives/Partitives (English: MCC
= 0; French: MCC = 0.036; German: MCC = 0), and Symmetry/Collectivity (English: MCC =
—0.12; French: MCC = —0.17; German: MCC = —0.17).

5.2 Fine-tuning stability and random seeds

We fine-tune the mBERT model multiple times while changing only the random seeds € [0;5]
for each considered language as described in Section 4. Figure 2 shows the seed-wise results for
English. The results for the other languages are presented in Appendix 8.1. The overall pattern
is that the correlation of the fine-grained diagnostic features and model outputs varies w.r.t. the
random seed. Namely, some features demonstrate a large variance in the MCC score over differ-
ent random seeds, for example, Conditionals (English: MCC = 0.6 [0]; MCC = 0.13 [1, 4, 5]),
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English diagnostic
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Figure 2. MCC scores on the English diagnostic dataset for mBERT fine-tuned with multiple random seeds.

Nominalization (English: MCC = 0.46 [0]; MCC = 0.46 [1, 3, 4, 5]), Datives (French: MCC =
0.64 [4]; MCC = 0.76 [5]; MCC = 0 [1, 3]), Non-monotone (French: MCC = 0 [0, 2]; MCC
= —0.58 [4]; MCC = 0.21 [5]), Genitives/Partitives (German: MCC = 0 [0, 1]; MCC = 0.56
[2]; MCC = —0.29 [4]), Restrictivity (Russian: MCC = 0.12 [0, 2, 5]; MCC = 0 [3, 4]; MCC
= —0.65 [1]), and Redundancy (Swedish: MCC = 0.34 [2]; MCC = 0 [3]; MCC = 0.8 [5]).
On the one hand, a number of features positively correlates with the model predictions regard-
less the random seed, such as Core args, Intersectivity, Prepositional phrases, Datives (English);
Active/Passive, Existential, Upward monotone (French); Anaphora/Coreference and Universal
(German); Factivity and Redundancy (Russian); Symmetry/Collectivity and Upward monotone
(Swedish). Some features, on the other hand, predominantly receive negative MCC scores:
Disjunction and Intervals/Numbers (English), Symmetry/Collectivity (French and Russian),
Coordination scope and Double negation (German), Conditionals and Temporal (Swedish). Table 3
aggregates the results of the seed-wise diagnostic evaluation for each language. While overall MCC
scores within each language insignificantly differ, the mBERT model still have a weak correlation
with the linguistic properties. Besides, the pairwise Pearson’s correlation coefficients between the
RS models? vary between languages up to 0.22, which specifies that fine-tuning stability of the
mBERT model is dependent upon language.

Table 6. (see Appendix 8.1) presents granular results of the per-category fine-tuning stability
of the mBERT model for each language. We now describe the categories that have received the

dWe refer to the RS model as the model instance fine-tuned with a specific random seed value.
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Table 3. Results of the fine-tuning stability experiments w.r.t. random seeds for
each language. Overall MCC = overall MCC scores of each RS model averaged by
the total number of RS models. RS corr. = pairwise Pearson’s correlation coef-
ficients between the RS models’ MCC scores, averaged by the total number of
random seed pairs.

Language Overall MCC RS corr.
English 0.200 £ 0.016 0.634
French 0.178 £ 0.027 0.529
German 0.158 £0.024 0.411
Russian 0.182 +0.033 0.455
Swedish 0.169 £ 0.028 0.517
Average 0.177 £ 0.026 0.509

less and most significant standard deviations in the MCC scores over multiple random seeds. For
most of the languages, the most stable categories are Common sense (o € [0.04; 0.09]) and Factivity
(o €[0.04;0.1]), while the most unstable ones are the categories of the Lexical Semantics, Logic
and Predicate-Argument Structure, for example, Genitives/Partitives (o € [0.17;0.31]), Datives
(0 €[0.12;0.34]), Restrictivity (o € [0.04;0.3]), and Redundancy (o € [0.16;0.32]). The variance
in the performance indicates the inconsistency of the linguistic generalization on a certain group
of categories both collectively and discretely for the languages.

5.3 Fine-tuning stability and dataset size

Recent and contemporaneous studies report that a small number of training samples leads to
unstable fine-tuning of the BERT model (Devlin et al., 2019; Phang et al., 2018; Zhu et al., 2019;
Pruksachatkun et al., 2020a; Dodge et al., 2020). Toward that end, we conduct two experiments
to investigate how additional training data impacts the fine-tuning stability in the cross-lingual
transfer setting and how it changes while the number of training samples gradually increases. We
use the MNLI (Williams et al., 2018) dataset for English and collapse “neutral” and “contradiction”
samples into the “not entailment” label to meet the format of the RTE task (Wang et al., 2019). The
resulting number of the additional training samples is 374k which are added to each language’s
corresponding RTE training data.

Does extra data in English improve stability for all languages? To analyze the performance
patterns, we compute deltas between the feature-wise MCC scores and standard deviation val-
ues (o) when using a single RTE training dataset (see Section 5.2) and a combination of the
RTE and MNLI training datasets. Figure 3 shows heat maps of how the fine-tuning stability has
changed after fine-tuning on the additional data. We find that the MCC scores have increased
for 32% categories among all languages on average (delta between the MCC scores is more than
0.1). The per-category fine-tuning stability has improved for 34% of categories among all lan-
guages on average (delta between the o values is below —0.05). An interesting observation is that
some categories receive confident performance improvements for all languages (the MCC delta
is above 0.2). Such categories include Conjunction, Coordination scope, Genitives/Partitives, Non-
monotone, Prepositional phrases, Redundancy, and Relative clauses. However, the additional data

¢The percentage corresponds to the fraction of the heat map cell values for all languages that are higher/lower than a
specified threshold for the corresponding metric. The thresholds are chosen empirically and can be adjusted depending on
the strictness of the experimental setting.
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(@) Delta MCC (b) Delta o

Figure 3. Feature-wise heat maps of the performance patterns after fine-tuning on combined RTE and MNLI training
datasets. Left: Delta between MCC scores (higher is better). Right: Delta between standard deviation values (lower is better).

does not help for learning the Disjunction and Downward monotone categories and even hurts
the performance as opposed to the results in Section 5.2. We also find that 61% of categories for
Russian have the o deltas below —0.05, indicating that the per-category stability can be greatly
improved by extending the training data with examples in the English language.

Table 4 presents the results of this setting with a comparison to the previous experiments
where the model is fine-tuned on the standardized train data size with multiple random seeds
(see Section 5.1 and 5.2). The overall trend is that extension of the RTE training data with the
MNLI samples helps to improve the fine-tuning stability for each language. Overall MCC scores
for the diagnostic features have increased from 0.177 to 0.263 on average (up by 49%), and the
average standard deviation decreased by 0.166. Analyzing the impact on the fine-tuning stability
w.r.t. random seed (see Appendix 8.2), we observe that variance in the MCC scores between the
RS models has predominantly decreased for all languages. Moreover, pairwise Pearson’s correla-
tion coefficients between the RS models have improved from 0.509 to 0.837 on average (up by
64%).

How many training samples are required for stability? To investigate the fine-tuning sta-
bility in the context of the training data size, we fine-tune the mBERT model as described
in Section 4, while changing random seed € [0;5] and gradually adding the MNLI samples
€ [1k, 5k, 10k, 50k, 100k, 200k, 250k, 374k] to the RTE training data for English and Russian.
Figure 4 shows the results of this experiment. Despite the fact that the overall MCC scores stop
increasing at the size of RTE + 10k for both languages, the RS corr. is steadily improving, indicat-
ing a smaller variance in the MCC scores between the RS models. Besides, the model needs more
data to improve the stability for Russian (recall that we add extra data in English).

5.4 Fine-tuning stability and presence of linguistic categories

We conduct the following experiment to investigate the relationship between the fine-tuning sta-
bility and particular diagnostic categories in the training data. We design a rule-based pipeline
for annotating 15 out of 33 diagnostic features for English and Russian. Then, we evaluate the
model depending on their presence percentage in the corresponding RTE training dataset com-
bined with 10k training samples from MNLI (this amount of extra data is selected based on the
results in Section 5.3.).
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Table 4. Results of the fine-tuning stability w.r.t using additional MNLI training samples in the cross-lingual
transfer setting. Overall MCC = overall MCC scores of each RS model averaged by the total number of RS
models. RS corr. = pairwise Pearson’s correlation coefficients between the RS models’ MCC scores, averaged

by the total number of random seed pairs.

11

Language Fine-tuning data Overall MCC RS corr.
English RTE 0.200 + 0.016 0.634
RTE & MNLI 0.294 + 0.006 0.929
French RTE 0.178 +0.027 0.529
RTE & MNLI 0.268 +0.010 0.822
German RTE 0.158 + 0.024 0.411
RTE & MNLI 0.213+0.010 0.836
Russian RTE 0.182 +0.033 0.455
RTE & MNLI 0.263 +0.012 0.810
Swedish RTE 0.169 + 0.028 0.517
RTE & MNLI 0.277 £ 0.016 0.785
Average RTE 0.177+£0.177 0.509
RTE & MNLI 0.263 £0.011 0.836
030
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Figure 4. Results of the fine-tuning stability w.r.t. the number of additional MNLI training samples added to the RTE training
data for English and Russian. Overall MCC = overall MCC scores of each RS model averaged by the total number of RS models.
RS corr. = pairwise Pearson’s correlation coefficients between the RS models’ MCC scores, averaged by the total number of
random seed pairs.

Description of annotation pipeline. Our study suggests that annotation of low-level diagnos-
tic categories can be partially automatized based on features expressed lexically or grammatically.
Lexical Semantics can be detected by the presence of quantifiers, negation morphemes, factiv-
ity verbs, and proper nouns. Logic features can be expressed with the indicators of temporal
relations (mostly prepositions, conjunctions, particles, and deictic words), negation, and condi-
tionals. Features from the Predicate-Argument Structure category can be identified with pronouns
and syntactic tags (e.g., Relative clauses, Datives, etc.). However, Knowledge categories cannot be
obtained in this manner.

Such approach relies only on the surface representation of the feature and is limited by the
coverage of the predefined rules, thus giving space to false-negative results. Keeping this in mind,
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Figure 5. Distribution of the model MCC scores when fine-tuned on the combined data (RTE 4 10k) as opposed to the
standardized dataset size.

we construct a set of linguistic heuristics to identify the presence of a particular feature based on
the morphosyntactic and NER annotation with spaCy' for English, and built-in dictionaries and
morphological analysis with pymorphy2 for Russian (Korobov 2015). We also construct specific
word lists for most of the features for both languages, for example, “all,” “some,” “every,” “any,”
“anyone,” “everyone,” “nothing,” etc. (Quantifiers). The heuristics for the Russian language have
several differences. For instance, dative constructions are detected by the morphological analysis

of the nouns or pronouns, as the case is explicitly expressed in the flexion.

Stability and category distribution. We use the pipeline to annotate each training sample
from RTE, TERRa, and the MNLI 10k subset. Table 7 presents the feature distributions for the
datasets (see Appendix 8.3). Figure 5 depicts the model performance trajectories when fine-tuned
on the combined data as opposed to the standardized dataset size (see Section 5.1). The behav-
ior is predominantly similar for both languages, and there is a strong correlation of 0.94 between
the MCC performance improvements. We select four features for further analysis®: Conjunction
(the MCC score improved for both languages), Anaphora/Coreference (there is a significant differ-
ence in the feature distribution between RTE and MNLI, and no such difference between TERRa
and MNLI), Negation (the MCC score decreased for both languages, and the feature distribution
differs between the languages), and Disjunction (the MCC score decreased for both languages).
For each considered feature, we construct three controllable subsets with a varying percentage
of the presence in the training data. We follow the same fine-tuning and evaluation strategy
(see Section 4), changing random seed € [0;5] and the feature percentage presence € [25, 50, 75].
Table 5 presents the results of the experiment. The general pattern observed for both languages is
that adding more feature-specific training samples may rather hurt the fine-tuning stability along
with the MCC score for the feature.

fhttps://spacy.io/
8Q0ur future work includes analysis of the other features, specifically for French, German, and Swedish.
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Table 5. Results of the fine-tuning stability w.r.t. varying degree of the feature distribution in the MNLI subset
for English and Russian. Feature MCC = feature MCC score of each RS model averaged by the total number
of RS models. RS corr. = pairwise Pearson’s correlation coefficients between the RS models’ MCC scores,
averaged by the total number of random seed pairs.

Feature MCC RS corr.
Feature Presence, % En Ru En Ru
Conjunction 25 0.717 £ 0.07 0.656 + 0.05 0.812 0.732
50 0.752 £ 0.03 0.648 +0.12 0.783 0.749
75 0.682 £ 0.01 0.534+0.13 0.792 0.684
Negation 25 0.013 4+ 0.06 —0.032 £ 0.04 0.812 0.712
50 0.014 +0.05 0.005 + 0.06 0.839 0.751
75 0.004 £ 0.05 0.029 + 0.08 0.742 0.684
Anaphora/coreference 25 0.125 + 0.05 0.125 + 0.05 0.845 0.845
50 0.171 £ 0.05 0.223 +0.08 0.848 0.666
75 0.202 £ 0.05 0.197 + 0.04 0.778 0.704
Disjunction 25 —0.327+£0.16 —0.078 £0.14 0.841 0.706
50 —0.198 + 0.05 —0.175+0.18 0.781 0.752
75 —0.146 £ 0.06 —0.092+£0.8 0.831 0.608

Feature MCC. The highest MCC scores for English are achieved when adding 50%
(Conjunction, Negation), or 75% extra samples (Anaphora/Coreference, Disjunction). In contrast,
this amount of data has decreased the MCC performance for Russian (Conjunction, Negation).
Instead, the minimum number of 25% additional samples are required to receive the best
MCC scores for the categories of Conjunction and Disjunction. Negation obtains an insignificant
improvement when adding 75% samples, and Anaphora/Coreference is of 0.223 MCC at 50% extra
data.

Fine-tuning stability. Despite the fact that the feature MCC scores may increase, the fine-tuning
stability may decrease for the identical amounts of additional training samples, for example,
Conjunction (English and Russian), Negation (Russian), Anaphora/Coreference (English), and
Disjunction (English and Russian). The minor variance between the RS models is predominantly
the 25% or 50% extra data size for both languages.

Probing analysis. To analyze from another perspective, we apply the annotation pipeline to
construct three probing tasks, aimed at identifying the presence of categories of Logic, Lexical
Semantics, and Predicate-Argument structure. More details can be found in Appendix 8.4.

6. Discussion

Acquiring linguistic knowledge through NLI. A thorough language-wise analysis using the pro-
posed multilingual datasets reveals how well the model learns the phenomena it is intended to
learn for solving the NLI task. Despite the variability in the MCC performance, mBERT shows
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a similar behavior on a number of features on the languages that differ in their richness of mor-
phology and syntax (see Section 5.1). Specifically, the model outputs are positively correlated with
the following diagnostic categories that reflect the language peculiarities: Logic (Upward mono-
tone, Conditionals, Existential, Universal, and Conjunction), Lexical semantics (Named entities),
and Predicate-Argument structure (Ellipsis, Coordination scope, and Anaphora/Coreference). On
the contrary, there is a number of features that predominantly receive negative MCC scores:
Logic (Disjunction, Downward monotone, and Intervals/Numbers) and Predicate-Argument struc-
ture (Restrictivity). The Logic features are reminiscent of the properties of formal semantics, which
captures the meaning of linguistic expressions through their logical interpretation utilizing for-
mal models (Venhuizen et al., 2021). Monotonicity (Upward/Downward monotone), as one of
such features, covers various systematic patterns and allows for assessing inferential systematicity
in natural languages. In line with (Yanaka et al., 2019b), our results show that the model gen-
erally struggles to learn the Downward monotone inferences with Disjunction for all languages.
Another phenomenon to which mBERT is insensitive is the category of Negation. The model out-
puts weakly correlate with the true labels when the sample contains Negation, Double negation, and
Morphological negation, indicating that the model fails to infer this core construction, which is a
well-studied problem in the field (Naik et al., 2018; Ettinger 2020; Hosseini et al., 2021). Recently,
Wallace et al., (2019) have shown that it is difficult for contextualized LMs to generalize beyond
the numerical values seen during training, and various datasets and model improvements have
been proposed to analyze and enhance the understanding of numeracy (Thawani et al., 2021). The
results for the category Intervals/Numbers in the context of the NLI problem reveal that numerical
reasoning does not correlate with the expected model behavior (German and Russian) and even
confuses the model (English, French, and Swedish). We also find that the results for the category of
Symmetry/Collectivity (Lexical Semantics) vary between the considered languages, achieving neg-
ative MCC scores for most of them (English, French, and German). We relate this to the fact that
the model may overly rely on the knowledge about entities and relations between them, refined
from the pretraining corpora, so that linguistic expressions of the features are ignored (Tanchip
et al.,, 2020; Kassner and Schiitze 2020). Last but not least, we find that broadly defined categories
such as Common sense and World knowledge do not show a significant correlation for all analyzed
languages.

Comparing our results with the diagnostic evaluation of Chinese Transformer-based mod-
els on the NLI task (Xu et al., 2020), we observe the following similar trends". Consistent with
our findings, Common sense and Monotonicity appear to be quite challenging to learn. However,
the results for low-level categories that fall under Predicate-Argument Structure might differ.
While the Chinese LMs achieve an average accuracy score of 58% on this category, mBERT has
a hard time dealing with Nominalization or Restrictivity but tends to learn Coordination scope,
Prepositional phrases, and Genitives/Partitives. At the same time, predictions of mBERT weakly
correlate with Double negation, but the Chinese models receive an average accuracy score of 60%.
Similarly, Lexical semantics is one of the best-learned Chinese categories; however, the mBERT
model does not demonstrate a consistent behavior on the corresponding low-level categories. A
more detailed investigation of cross-lingual LMs on these typologically diverse languages may
shed light on how the models learn linguistic properties crucial for the NLI task and provide more
insights on the cross-lingual transfer of language-specific categories and markers (Hu et al., 2021).

The impact of random seeds. Our results are consistent with McCoy et al., (2020) who find that
the instances of BERT fine-tuned on MNLI vary widely in their performance on the HANS dataset.
In our work, the examination of the mBERT’s performance on the diagnostic datasets reveals a sig-
nificant variance in the MCC scores and standard deviation w.r.t. random seeds for the majority of
considered languages (see Section 5.2, Appendix 8.1). We observe significant standard deviations

"Note that the results are not directly comparable in terms of target metrics, dataset domains, and models.
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in the diagnostic performance, which indicates both per-language and per-category fine-tuning
instability of the mBERT model. The findings highlight the importance of evaluating models on
multiple restarts, as the scores obtained by a single model instance may not extrapolate to other
instances, specifically in the multilingual benchmarks such as XGLUE (Liang et al., 2020) and
XTREME (Hu et al., 2020b). Namely, the features that are crucial for diagnostic analysis of LMs
might not be appropriately learned by a particular instance, which may underscore their general-
ization abilities on the canonical leaderboards or even question whether LMs are indeed capable
of capturing them either from pretraining or fine-tuning data. The statements are supported by
the probing analysis, which shows that fine-tuning of mBERT on the RTE tasks with varying ran-
dom seeds may unpredictably affect the model’s knowledge (see Appendix 8.4). Specifically, the
effect can be abstracted as twofold: fine-tuned mBERT model either “forget” about a peculiar lin-
guistic category, or “acquire” the uncertain knowledge which is demonstrated by sharp increases
and decreases in the probe performance over several languages (Singh et al., 2020).

The impact of dataset size and feature proportions. Prior studies have reported contradic-
tory results about the effect of adding/augmenting training data on the linguistic generalization
and inference capabilities of LMs. Some works demonstrate that counterfactually augmented
data does not yield generalization improvements on the NLI task (Huang et al., 2020). However,
most recent studies show that fine-tuning BERT on additional NLI samples that cover particular
inference features improves their understanding while retaining or increasing the downstream
performance on NLI benchmarks (Yanaka et al., 2020, 2019b; Richardson et al., 2020; Min et al.,
2020; Hosseini et al., 2021). Besides, the proportion of the features in the training data can be
crucial for the model performance (Yanaka et al., 2019a). One of the closely related works by
(Hu et al., 2021) tests cross-lingual transfer abilities of XLM-R (Conneau et al., 2020) on the NLI
task for Chinese, exploring configurations of fine-tuning the model on combinations of Chinese
and English data and evaluating it on diagnostic datasets. Particularly, the model achieves the
best performance when fine-tuned on concatenated OCNLI (Hu et al., 2020a) and English NLI
datasets (e.g., Bowman et al., 2015; Williams et al., 2018; Nie et al., 2020) on the majority of cov-
ered diagnostic features, including uniquely Chinese ones: Idioms, Non-core argument, Pro-drop,
Time of event, Anaphora, Argument structure, Comparatives, Double negation, Lexical semantics,
and Negation. The results suggest that XLM-R can learn meaningful linguistic representations
beyond surface properties and even strengthen the knowledge with the transfer from English,
outperforming its monolingual counterparts.

Consistent with the latter studies, we find that extra data only in English provides better gener-
alization capabilities of mBERT for all considered languages, which differ in their peculiarities of
morphology and syntax. We also observe that using additional English data improves the fine-
tuning stability, resulting in lower standard deviation values and higher Pearson’s correlation
between the model instances’ scores (see Section 5.3). Another finding is that the number of train-
ing examples containing a particular feature might be critical for both diagnostic performance and
fine-tuning stability of the mBERT model (see Section 5.4).

Limitations. The concept of benchmarking has become a standard paradigm for evaluating
LMs against one another and human solvers, and dataset design protocols for the other languages
are generally reproduced from English. However, there are still several methodological concerns,
one of which is the dataset design and annotation choices (Rogers 2019; Dehghani et al., 2021). It
should be noted that a relatively small number of dataset samples has a common basis in bench-
marking due to expensive annotation or the need for expert competencies. Unlike datasets for
machine-reading comprehension, such as MultiRC (Khashabi et al., 2018) and ReCoRD (Zhang
et al,, 2018), the GLUE-style datasets for learning choice of alternatives, logic, and causal rela-
tionships are often represented by a smaller number of manually collected and verified samples.
They are by design sufficient for the human type of generalization but often pose a challenge
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for the tested LMs. The broad-coverage diagnostic dataset is standard practice for assessing lin-
guistic generalization of LMs. Nevertheless, it contains 1104 samples, and the number of samples
for certain features includes only 14 samples (Universal and Existential). These dataset design
choices might not provide an opportunity for a fair comparison and reliable interpretation of LMs,
which might be supported by bootstrap techniques or construction of evaluation sets balanced by
the number of analyzed phenomena. Evaluating datasets for sufficiency for in-distribution and
out-of-distribution generalization is another relevant challenge in the field. The solution might
significantly help both in interpreting model learning outcomes and in designing better evalua-
tion suites and benchmarks. Recall that our results might not be transferable to other multilingual
models, specifically different in the architecture design and pretraining objectives, for example,
XLM-R, mBART (Liu et al., 2020), and mT5 (Xue et al., 2021).

7. Conclusion

This paper presents an extension of the ongoing research on the fine-tuning stability and consis-
tency of linguistic generalization to the multilingual setting. We propose six GLUE-style textual
entailment and broad-coverage diagnostic datasets for French, German, and Swedish. The datasets
are constructed by translating the original datasets for English and Russian, with culture-specific
phenomena localized and language phenomena adapted under linguistic expertise. We address
the problem in the NLI task and analyze the linguistic competence of the mBERT model along
with the impact of the random seed choice, training data size, and presence of linguistic categories
in the training data. The method includes the standard SuperGLUE fine-tuning and evaluation
procedure, and we ensure that the model is run with precisely the same hyperparameters but
with different random seeds. The mBERT model demonstrates the per-category instability gen-
erally for categories that involve lexical semantics, logic, and predicate-argument structure and
struggles to learn monotonicity, negation, numeracy, and symmetry. However, related languages
show similar performance in active and passive voice, conjunction, disjunction, prepositional
phrases, and quantifiers. We also find that the generalization performance and fine-tuning sta-
bility can be improved for all languages by using additional data only in English, contributing to
the cross-lingual transfer capabilities of multilingual LMs. However, the number of training sam-
ples containing a particular feature might also hurt all model instances’ performance. We leave a
more detailed investigation of this behavior for future work. Another fruitful direction is analyzing
a more diverse set of monolingual and multilingual LMs, varying by the architecture design and
pretraining objectives. In general, our results are consistent with a growing body of related stud-
ies which explore aspects of learning inference properties from different perspectives, including
findings for Chinese, a language typologically different from the considered ones in our work. We
are publicly releasing the datasets, hoping to foster the diagnostic investigation of LMs in a cross-
lingual scenario, particularly in terms of benchmarking, which might promote a more holistic
understanding of multilingualism in LMs and their cross-lingual knowledge transfer abilities.
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8. Appendix
8.1 Fine-tuning stability and random seeds
Table 6 presents the results of the per-category fine-tuning stability for each language.

Table 6. Results of the per-category fine-tuning stability for each language. The MCC scores are averaged over the total
number of RS models. Average = The results averaged over five languages.

Feature English French German Russian Swedish Average

Active/passive 0.274+£0.16 0.245+0.10 0.124+0.13 0.310£0.10 0.1134+0.09 0.213+£0.12

Anaphora/coreference  —0.0714+0.09 0.048 £0.13 0.260 £ 0.03 0.035+£0.23 0.228£0.14  0.100£0.12

Common sense 0.046 £0.04 0.076+0.09 0.030£0.04 0.066+0.05 0.045+0.08 0.053+0.06

Conditionals 0.298 £ 020 0.040£0.30  0.044+£0.09 —0.207+0.14 -—0.151+0.18 0.004+0.18
Conjunction 0.182£0.19 0.274+0.22 0.259+£0.12 0.056+0.19 0.205+0.12  0.195+0.17
Coordination scope 0.048 £0.07 0.088+0.13 —0.125£0.15 0.136+0.07 0.019£0.10  0.033+0.10
Core args 0.246 £0.02  0.140+0.11  0.270£0.15 0.168+0.14 0.388+£0.05  0.242+0.09
Datives 0.388+0.12 0.337+0.34 0.362+0.29 0.268+0.23 0.012+0.21 0.273+0.24
Disjunction —0.188+0.11 0.116£0.03  0.074+0.22  0.059+£0.11 —0.0124+0.21 0.010£0.14
Double negation 0.142+£0.08 —0.0014+0.07 —0.235+0.23 0.041£0.21  0.076+0.13  0.005+£0.15

Downward monotone 0.135+£0.07 0.031+0.11  0.012£0.12 0.1294+0.09 0.066 £0.07  0.074+0.09

Ellipsis/implicits 0.454+0.03 0.113+0.18 0.031+0.14 0.028+0.10 0.180+0.22 0.161+0.13
Existential 0.221£0.0 0.355+0.06 0.249+0.2 0.122+0.16 0.333+0.19 0.256+0.14
Factivity 0.286 £0.05 0.139+0.09 0.150£0.10 0.247+0.04 0.197£0.05 0.204+0.07
Genitives/partitives 0.090£0.20 0.085+0.22 —0.027+031 0.168+0.17 0.462+0.26 0.156+0.23
Intersectivity 0.252£0.08 0.158+0.02 0.025+0.14 0.258+0.08 0.102+0.10  0.159 4+ 0.09
Intervals/numbers —0.177+0.10 —0.050£0.10 —0.075+0.10 —0.060£0.12 —0.1324+0.07 —0.099 £0.10

Lexical entailment 0.048 £0.06  0.077+0.08 0.048+0.10 0.111+0.12 0.076+0.11  0.072+0.09

Morphological negation  0.061+0.09  0.126+0.09  0.238+0.08  0.207 £0.18 0.09 £ 0.09 0.144 +0.11

Named entities 0.123+£0.09 -0.0724+0.18 0.152+0.22 0.160£0.14 0.143+0.14 0.101+£0.15
Negation 0.088£0.01  0.057+0.13 —0.027£0.16 0.093+0.04 0.045+0.10 0.05140.09
Nominalization 0.142+0.21  0.0024+0.01 0.117+0.11 0.295+£0.22 —0.006+0.15 0.110+0.14
Non-monotone 0.076 £0.07 —0.1024+0.26 0.122+0.13  0.120+0.14 0.063£0.23  0.056+0.17

Prepositional phrases 0.402£0.08 0.293+0.09 0.255+0.15 0.403+0.10 0.380+£0.12 0.347+0.11
Quantifiers 0.056 £0.07  0.252+0.17 0.124+0.11  0.2224+0.19 0.242+0.14 0.179+0.14
Redundancy 0.00 £ 0.00 0.075+0.24 0.047+0.16 0503+0.23 0.287+0.32 0.182+0.19

Relative clauses 0.081+0.05 0.248+0.15 0.303+0.21 0.247+0.20 0.169£0.17 0.210+0.15
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Table 6. Continued.

Feature English French German Russian Swedish Average

Restrictivity —0.094+0.20 —0.016+0.04 0.112+0.22 —0.048+0.30 0.198+0.23  0.030 £0.20

Symmetry/collectivity —0.024+£0.05 —0.1434+0.07 —0.009+0.18 —0.2024+0.12 0.428=+0.17 0.010+£0.12

Temporal 0.0024+0.22 —0.0074+0.11  0.063+£0.13 0.093+0.21  —0.051+£0.05 0.020+0.14
Universal 0.396 £0.19 0.725+0.15 0.495+0.14 0.3434+0.23 0.345+0.10 0.461+0.16
Upward monotone 0.292 £0.09 0.300 £0.13 0.196 £ 0.19 0.345+0.19 0.395+0.07 0.306+0.14
World knowledge 0.090 £0.12 0.090 £0.11 0.077 £ 0.10 0.03540.09 0.128 £0.10  0.084+0.10

Figures 6-9 show the results of the diagnostic evaluation of the mBERT model fine-tuned with
multiple random seeds on the corresponding RTE dataset for each language (see Section 5.2).

French diagnostic

Active/Passive 0.14
Anaphora/Coreference 0.01
Common sense 0
Conditionals 0.46
Conjunction 0.2
Coordination scope -0.15
Core args -0.004
Datives 0
Disjunction 0.094
Double negation -0.12
Downward monotone -0.12
Ellipsis/Implicits ki -0.12
Existential | 0.34
Factivity 0
Genitives/Partitives -0.15
Intersectivity 0.14
Intervals/Numbers -0.005
Lexical entailment -0.003
Morphological negation 0.033
Named entities 0
Negation -0.15
Nominalization 0
Non-monotone -0.095
Prepositional phrases . 0.19
Quantifiers K 0.42
Redundancy . 0.27
Relative clauses K 0.26
Restrictivity -0.094
Symmetry/Collectivity -0.18
Temporal 4 0.13
Universal -

Upward monotone
World knowledge

seed_0 seed_1 seed_2 seed_3 seed_4 seed 5

Figure 6. MCC scores on the French diagnostic dataset for mBERT fine-tuned with multiple random seeds.
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German diagnostic

Active/Passive 73 0.088 X 0.051
Anaphora/Coreference - i 0.31
Common sense 0 .038 0.091
Conditionals 9 0. 0.025 0.13
Conjunction 0 k 0.38
Coordination scope 0.057 0 0.061

Core args 0 R f 0.41

Datives ¢ |

Disjunction

Double negation
Downward monotone
Ellipsis/Implicits 2 2
Existential R i | 065 | 0.043

Factivity i L 0.11
Genitives/Partitives 0 m 9 -0.29
Intersectivity 0.003 0 E 0.14
Intervals/Numbers 0.093 0 0.079 0.005 0.13
Lexical entailment 0 ) ] 0.18
Morphological negation 0.33 i 0.17
Named entities 0 0. | o056 | 0.24
Negation -0.041 3 0.019 0.072
Nominalization 0.25 0 0.1
Non-monotone 0 0 0.26 0.26
Prepositional phrases 0.27 j— B 0
Quantifiers 0.2 0 0.19
Redundancy 0 k -0.11
Relative clauses = L0 K 0.12
Restrictivity 0.34 0 . 0.12
Symmetry/Collectivity -0.17 ).22
Temporal 0.023 C 3 .14

Universal 0.34
Upward monotone -0.053
World knowledge 0

seed_0 seed_1 seed_2 seed_3 seed_4 seed_5

Figure 7. MCC scores on the German diagnostic dataset for mBERT fine-tuned with multiple random seeds.

Russian diagnostic

Active/Passive - 0.28
Anaphora/Coreference . -0.14
Common sense 0.091
Conditionals 0.039 0
Conjunction . -0.076 0.32
Coordination scope 0.17 0.041
Core args . 0.15 0.004
Datives y | 059 | 0.28
Disjunction 4 5 0.061
Double negation > 0.34
Downward monotone 0. 0.17
Ellipsis/implicits -0 0
Existential ).06 -0.043

Factivity
Genitives/Partitives
Intersectivity
Intervals/Numbers
Lexical entailment
Morphological negation
Named entities 4
Negation .09 B g 0.009
Nominalization k s 0
Non-monotone - 059 . . 0
Prepositional phrases
Quantifiers
Redundancy
Relative clauses
Restrictivity
Symmetry/Collectivity
Temporal
Universal -
Upward monotone
World knowledge

seed_0 seed_1 seed_2 seed_3 seed_4 seed 5

Figure 8. MCC scores on the Russian diagnostic dataset for mBERT fine-tuned with multiple random seeds.
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Swedish diagnostic

Active/Passive : 88 0.19
Anaphora/Coreference - - i 0.38
Common sense 0 0 0.18
Conditionals 0.2 0. 0.041
Conjunction i B 0.32
Coordination scope 0 7 -0.013
Core args . .. B 0.41

Datives & 0.05 0.19 0.066

Disjunction E

Double negation
Downward monotone
Ellipsis/implicits
Existential

Factivity
Genitives/Partitives
Intersectivity
Intervals/Numbers
Lexical entailment
Morphological negation -§
Named entities
Negation
Nominalization
Non-monotone
Prepositional phrases
Quantifiers
Redundancy

Relative clauses
Restrictivity
Symmetry/Collectivity
Temporal

Universal

Upward monotone
World knowledge

Figure 9. MCC scores on the Swedish diagnostic dataset for mBERT fine-tuned with multiple random seeds.

8.2 Fine-tuning stability and dataset size

Figure 10 depicts the results of the language-wise diagnostic evaluation of mBERT when fine-
tuned on combined RTE and MNLI training samples. Comparing the heat map with that of
Figure 1 (see Section 5.2), we observe that MCC scores for some categories have greatly improved
for all languages (Conjunction, Coordination scope, Core args, Genitives/Partitives, Prepositional
phrases, and Universal), while logic categories negatively correlate with the model predictions
(Disjunction, Downward monotone, and Intervals/Numbers). Figures 11-15 show seed-wise diag-
nostic evaluation of the mBERT model when fine-tuned on combined RTE and MNLI training
datasets with multiple random seeds.
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Active/Passive

Anaphora/Coreference
Common sense
Conditionals
Conjunction
Coordination scope
Core args
Datives
Disjunction
Double negation
Downward monctone
Ellipsis/implicits
Existential E 0.34
Factivity 9 0.31
Genitives/Partitives - .| 0.38
Intersectivity 0.23 0.25
Intervals/Numbers 0.17 -0.13
Lexical entailment . 0.074
Morphological negation 0.14 0.13
Named entities
Negation
Neminalization
Non-monotone
Prepositional phrases
Quantifiers
Redundancy
Relative clauses
Restrict
Symmetry/Collectivity
Temporal
Universal
Upward monotone
World knowledge 0.096
English French German Russian Swedish

25

Figure 10. Language-wise diagnostic evaluation of mBERT when fine-tuned on combined RTE and & MNLI training datasets.

English with MNLI

Active/Passive
Anaphora/Coreference
Common sense
Conditionals
Conjunction
Coordination scope
Core args

Datives

Disjunction

Double negation
Downward monotone
Ellipsis/implicits
Existential

Factivity
Genitives/Partitives -
Intersectivity
Intervals/Numbers
Lexical entailment
Morphological negation
Named entities
Negation 0 ). 0 0.02
Nominalization B 0 . 0.21
Non-monotone § 0 ! 0.37
Prepositional phrases
Quantifiers
Redundancy

Relative clauses
Restrictivity
Symmetry/Collectivity
Temporal

Universal -

Upward monotone
World knowledge

Figure 11. mBERT’s seed-wise English diagnostic evaluation when fine-tuned on combined RTE and MNLI training datasets.
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French with MNLI

Active/Passive
Anaphora/Coreference
Common sense
Conditionals
Conjunction
Coordination scope
Core args

Datives

Disjunction

Double negation
Downward monotone
Ellipsis/implicits
Existential

Factivity
Genitives/Partitives
Intersectivity
Intervals/Numbers

Lexical entailment 0.082 5 0.074
Morphological negation 0.22 8 .098 0.17
Named entities 0.12 0.13
Negation -0.009 0 0.02

Nominalization
Non-monotone
Prepositional phrases
Quantifiers
Redundancy

Relative clauses
Restrictivity
Symmetry/Collectivity
Temporal

Universal

Upward monotone
World knowledge

seed_0 seed_1 seed_2 seed_3 seed_4 seed 5

Figure 12. mBERT’s seed-wise French diagnostic evaluation when fine-tuned on combined RTE and MNLI training datasets.

German with MNLI

Active/Passive -0.088 : -0.016
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Figure 13. mBERT’s seed-wise German diagnostic evaluation when fine-tuned on combined RTE and MNLI training datasets.
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Russian with MNLI
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Figure 14. mBERT’s seed-wise Russian diagnostic evaluation when fine-tuned on combined RTE and MNLI training datasets.
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Figure 15. mBERT’s seed-wise Swedish diagnostic evaluation when fine-tuned on combined RTE and MNLI training
datasets.
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8.3 Automatic annotation of diagnostic features

Table 7. Distribution of 15 diagnostic features in the RTE training datasets for English and
Russian, and in the 10k MNLI subset according to the automatic annotation pipeline.

Feature TERRa RTE MNLI 10k
Double negation 0.015 0.009 0.010
Negation 0.467 0.086 0.134
Intervals/numbers 0.155 0.517 0.149
Temporal 0.066 0.145 0.047
Conditionals 0.043 0.043 0.067
Conjunction 0.528 0.601 0.467
Disjunction 0.034 0.072 0.083
Prepositional phrases 0.963 0.993 0.925
Anaphora/coreference 0.676 0.547 0.679
Relative clauses 0.203 0.451 0.340
Datives 0.568 0.100 0.099
Quantifiers 0.187 0.143 0.217
Factivity 0.094 0.059 0.082
Morphological negation 0.394 0.378 0.255
Named entities 0.322 0.893 0.461

8.4 Coarse-grained probing analysis

A prominent methodology to explore the inner workings of pretrained LMs is to train a
lightweight classifier over features produced by them to predict a linguistic property. During the
probing procedure, the hidden representations produced by the model are taken from various
layers of the transformer, and then a simple classifier is trained to predict a linguistic feature based
on the given supervision (e.g., whether a particular category is present in a sentence or not). The
underlying assumption is that if the classifier can predict the property, then the representations
implicitly encode the linguistic knowledge.

We apply the annotation procedure (see Section 5.4) to create a set of three binary classification
tasks for English and Russian that correspond to the coarse-grained diagnostic categories of Logic,
Lexical Semantics, and Predicate-Argument structure. The task is to identify if a particular category
is present in a given pair of sentences. We follow the SentEval probing methodology (Conneau
et al, 2018a) to train a linear classifier using cross-entropy loss, optimized with Adam (Kingma
and Ba 2014). The classifier is trained on the corresponding annotated RTE dataset’s concatenated
train and validation sets. We tune the 12-regularization parameter € [0.1, ..., 1e~>] on the RTE
test set and evaluated performance on the diagnostic set using accuracy score. The input to the
classifier is a concatenation of the mean-pooled intermediate representations of each sentence
in a given pair. We probe a pretrained mBERT model as a reference, and six mBERT models
fine-tuned on the RTE task with multiple random seeds € [0; 5] (see Section 5.2).

We now provide a brief description of the probing results. The overall pattern is that the prob-
ing trajectories across the models are more consistent for English than Russian. Specifically, the
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Probing results for Russian: Logic

Figure 16. Probing results for the category of Logic. X-axis is
performance (accuracy score).

Probing results for English: Lexical Semantics
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Figure 17. Probing results for the category of lexical semantics. X-axis is the layer number, while Y-axis refers to the classifier
performance (accuracy score).
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Figure 18. Probing results for the category of predicate-argument structure. X-axis is the layer number, while Y-axis refers
to the classifier performance (accuracy score).



30 Maria Tikhonova et al.

linguistic properties tend to be more localized in the lower layers than in the higher ones, mean-
ing that the latter is more affected by the fine-tuning (Wu et al., 2020). Note that the lower and
middle layers of the models for Russian are less similar, which is demonstrated by sharp increases
and decreases in the probe performance. Besides, the fine-tuning effect differs across the tasks,
for example, leading to better performance over the Lexical Semantics task for English, and vice
versa for Russian (see Figure 17). This can be interpreted as follows: the fine-tuning unpredictably
causes the model either to “forget” about a particular knowledge or to “acquire” the knowledge
of low certainty, shown over several RS models for both English and Russian. Despite the vary-
ing trajectories, the performance results remained similar for both languages, ranging from being
close to or below random choice (see Figures 17 and 18) to becoming more confident in the lower
layers on the Logic tasks (see Figure 16), with overall quality around 65% accuracy score.
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